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We find that by using a quantum crystal formalism the relatively small 
anisotropic molecular interactions in hydrogen can resolve the large 
discrepancy between the experimental equation of state and several 
recent theories in the solid phase at high pressure. This does not 
require the introduction of any new intermolecular potential. 

THERE ARE several recent theoretical calcula­
tions 1-4 of the equation of state for solid Hz. 
These use quite different formalisms, reference 1 
being a semi-classical harmonic calculation while 
reference 2 is a Monte Carlo variational calcu­
lation; reference 3 is a quantum crystal cluster 
expansion and reference 4, a self-consistent 
Green's function method. These theories agree 
in the high pressure (P ~ 1Q3 atm) regime which 
indicates that for some purposes (e.g. calcula-
tion of the ground state energy E) short-range 
correlations between molecules can be ignored 
at high pressure as in reference 1 without invali­
dating the calculation. In view of the consistent 
results of references 1-4, it would seem that one 
can calculate the equation of state of molecular 
hydrogen quite well and thus predict the molecular 
solid-metal phase transition 5 and apply the result 
to various astrophysical problems 6 in a range of 
pressure where experiments are difficult to perform. 
Unfortunately, even with P rv 10 4 atm there is a 
large discrepancy between the theories listed 
above and measurements 7 of the PV curve near 
zero temperature. If we believe the experiments 
are reasonably accurate, then the most likely 
source of the disagreement is the inadequacy of 
the two-body potentials B which are obtained 
empirically from measurements on gaseous Hz. 
Needless to say, the introduction of a potential 
wi th new parameters cannot lead to any better 
understanding of the physics in the problem. The 
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purpose of this letter is to incorporate the aniso­
tropic part of the intermolecular interaction 'Vani 9,10 

into our previous formalism 4 and to demonstrate 
that this can remove the discrepancy between 
theory and experiment for the ground state energy 
and pressure of molecular hydrogen within the 
framework of the present understanding of the 
interaction. 

Even at relatively large molar volumes corres­
ponding to a nearest neighbor distance a rv 3.7 A, 
Vani is large enough to have a substantial effect 
on a given .pair of molecules in certain relative 
orientations; 10 however, it has a small effect 
when averaged over many particles localized at 
lattice sites. 9 Several 3, 5,11 attempts have been 
made to include 'Vani in calculations of E; Neece, 
et al. 5 treat th·~ melecules claSSically, giving 
them several particular orientations. In reference 
3, on the other hand, they are treated quantum 
mechanically but are not allowed to be in angular 
momentum states l .j O. Such states are used in 
reference 11, but the molecules are otherwise 
treated as classical point particles placed on 
lattice sites. In the present work, we use a totally 
quantum mechanical approach, allowing both 
motion of the center of mass of the melecules and 
angular momentum states 12 l > O. 

The potential between two Hz molecules de­
pends on the displacement r = r 1 - rz between the 
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centers of mass of the molecules and on the direc­
tions of their axes. We shall write it as 

(1) 

I' =0.2 

where w, and W 2 describe the orientations of the 
molecules relative to the crystal c-axis (h.c.p. 
structure is assumed) and Yl is the spherical 
harmonic YlO ; 'yOO /41T is the isotropic potential 
y (r) which we shall take as the empirical modi­
fied Buckingham (E - 6) potential 13 

{~/ r~· exp[a(l-r/rm)] -(rm /r)6], 1'> rmax 
VCr) = 1-6 a a 

00 , r< rmax 

where Eo = 38.02 K, rm = 3.339 A, a = 14, and 
rmax/rm = .20319. 

The anisotropic parts y20 and y02 are taken 
to be the first terms in Nakamura's expansion of 
de Boer's potential, 

20 0 2 81T[ -(r-ao)/ p tao\S] 
y = y =S{:3,e -(:32\7J P2(cos(1,z) 

(2) 

with (3 , = 2.6 K, {:32 = 1.6 K, P = .283 A and a o = 
3.75 A; (1 lZ is the angle between r and the c-axis 
while PI is the Legendre polynomial of degree l. 
For y22 the dominant term is the electric quad­
rupole-quadrupole interaction, 

In our earlier work 4 we calculate the single 
particle wave function ¢.(I,w,) localized around 
lattice position Ri using a self-consistent poten­
tial field Ui (1). A straightforward extension of 
this theory leads us to expand ¢i as 

¢i(I,w,) = Yo (w,)¢o i(l) + Y2(W,)CP2i(1) (4) 

while 

u'i(l,w,) = Yo (w')Yo(wJuoi (I) + Yo (w,)Y2 (w,)u 2i(l) 

(5) 

is the self-consistent field; U o and U z are written 
in the harmonic approximation by expanding 

ui(l,w,) = L. S V(r,w"w2) Xij (1,2,w"w2) 
J'#> 

l¢j(2,w2)1 2 d 3 ,z dW2 (6) 

to second order in the displacement 1 r ,- Ri I. 
Here Xij is the correlation function for particles 
1 and 2; it is expanded as 

,,' Zl' Xij = 41T L... Xij (12)Yz (w,)Yz, (w 2) (7) 
z,Z'=O,2 

and is found from the equation 

(8) 

Hij = _(V,2 + 'V22)/2m + l,(l, + I)B/ + l2(lZ + I)B/ 

+ V(r,w"w z) + U;(I,w,) + Uj (2,w z) + ().ij (1,2) 

-[JXi/1,2,w"wz) V\r,-rz ,w,,(2)1 ¢Hl,W)1 2 d 3r;dw, 
+ fXi/1,2,w"Wz)V(r,-rz ,w,,(2 )1¢f(2,wz)I Z d s-r2 dwz ] 

(9) 

where BI = 1/21 = 87 K, I being the moment of 
inertia of the hydrogen molecule. The term ().' j 

contains some effects of three-body correlations; 
it is approximated 4 by Pij (r'2 - Rij) where Pij 
is a constant such that the condition 

JXij (1,2, w"w2)R W (r - Rij)l¢i (l,w,)!, 

l¢j (2,w 2)12 d 3 r, d 3
'2 dw,dw 2 = 0 

is satisfied. Also, "'0 is chosen to give physically 
reasonable behavior of Xi j for r, 2 .... 00. 

In reference 4, where V(r;w"w2) consists 
only of VOO , equations (6) and (8) plus the 
Schrodinger equation for ¢i are solved simultan­
eously. In the present work, equation (8) is 
decomposed into four equations; it is very dif­
ficult to solve the resulting set of equations 
self-consistently. We have determined X i j to 
first order in y20 / B/ and V 22 

/ B/ which is ade­
quate for V ~ 10 cm 3; this volume is also the 
smallest reported by Stewart. 7 

Xi~ 2 = - Xir; (¢2 j/¢Oj + 'Vo2 /241TB/ ) 

xtJ = - X:rJ (CP2dcpOi + 'V 20 /241TB/ ) 

22 00 V22/48 Q_ Xij = -Xij 1T~ (10) 

where X: is the correlation function of reference 
4. Using equation (10), we solve equation (6) and 
the single-particle Schrodinger equation self-con­
Sistently. It is then easy to find the crystal 
energy per particle, 

E =J ¢7(I,w,) (-'V,2/2m+u;(I,w,)/2)¢i (l,w,)d 3 r,dw, 

+ 6B, J ¢~i(l) d3 r, (11) 
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FIG.!. The ground state energy (K) of solid Hz 

vs. molar volume (cm 3). 

Using the anisotropic interaction of equations 
(2) and (3) we find curve C of Fig. 1; A is experi­
mentaf and B is from reference 4, corresponding 
to 'Vani '= O. The dashed curve is the calculation 
of Krumhansl and Wu 3 also employing the E-6 
potential. From the plot we see that the introduc­
tion of 'Vani improves the agreement of theory and 
experiment but that there is still a significant 
discrepancy. We believe that an important point 
in this connection is the value of P in equation 
(2). The value 0.283 A is theoretical ; according 
to the empirical E-6 potential, however, P should 
be rm /a = 3.339/ 14 = 0.239A. Since the expo­
nential parts of VOO and 'Vani should in principle 
have the same r dependence, we believe that the 
smaller P is preferred. Its use in 'Van! leads to 
curve D of Fig. 1 which agrees quite well with 
Stewart's measurements, especially at high pres­
sures where our general formalism is most reliable. 

The good agreement is, of course, conditional 
depending on the validity of the approximations. 
We believe the only questionable point is that 
some terms proportional to Y2m , m I 0, are ignored 
in 'V ani' It is straightforward but very tedious to 
include them; we expect that they will lead to 
values of !1.Ea (the correction to E produced by 

Vani ) about three or four times larger than those 
found here. 15 As a result, the calculated energy 
will be too low. However, the situation is recti­
fied if we also decrease f3 1 in equation (2) by 
about a factor of 2 to 'V 1.3 K; there is consider­
able independent evidence that this is more 
nearly correct than f31 = 2.6 K. For example, the 
calculated volume dependence 4 of the A-transition 
temperature agrees better with measurements 
when f31 is decreased by about a factor of two. 
Harris 16 gives a thorough discussion of further 
evidence supporting a smaller f3" 

An interesting feature of our calculation is 
that V20 and VOZ make by far the most important 
contributions (~90%) to !1.Ea at all molar volumes 
investigated, even though V 22 is larger at large 
V. The reason is that zero-point motion and 
correlations are important in modulating the 
strength of the interactions; V0 2 and V 2 0 are 
strongly enhanced 4 by these quantum crystal 
effects at large volume. At smaller volume, they 
are larger than 'vzz • 

These results are in conflict with the work 
of Raich and Etters 11 who find a vanishing con­
tribution from V ZO ann 'Voz . This occurs because 
they treat the Hz molecules as quantum mechanical 
rigid rotators pinned to the lattice sites wi th no 
zero-point motion and, naturally, no correlated 
motions. Consequently, 'V20 and VOZ give zero 
net contribution to U i when summed over nearest 
neighbors of a given molecule in an h.c.p. or 
cubic crystal. Because we have zero-point motion 
and find the field Ui according to equation (6), we 
find a non-vanishing and in fact large contribution 
from these potentials. It vanishes only in the 
classical limit of cf> ~ .... 0 (r, - Ri ) as implicity 
assumed in reference 11. We conclude that a 
quantum crystal formalism is essential in calcu­
lating !1.Ea and leads to a much larger correction 
than would otherwise be found. 

Another interesting result of our calculation 
is the amplitude cf>Zi for each molecule to be in 
the I = 2 state. For V ~ 11 cm 2 it varies slowly, 
being 2-4% of the total amplitude. The amplitude 
rises to about 15% at 'V = 10 cm 3 in the case of 
curve D, indicating that our approach is not valid 
for much smaller V. Similarly, we note that !1.Ea 
'V 200 K is large for curve D at V 'V 10 cm3

; however, 
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the energy shift for a given pair of molecules is 
rv 30 K, still considerably smaller than the energy 
rv 200 K required to produce a rotational or trans­
lational excited state. 
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